
Mainframe Application
Developer Study

A FORRESTER CONSULTING THOUGHT LEADERSHIP PAPER COMMISSIONED BY BROADCOM, AUGUST 2024

ABOUT FORRESTER CONSULTING

Forrester provides independent and objective research-based consulting to help leaders deliver key
outcomes. Fueled by our customer-obsessed research, Forrester’s seasoned consultants partner with
leaders to execute their specific priorities using a unique engagement model that ensures lasting impact.
For more information, visit forrester.com/consulting.

© Forrester Research, Inc. All rights reserved. Unauthorized reproduction is strictly prohibited. Information is
based on best available resources. Opinions reflect judgment at the time and are subject to change. Forrester®,
Technographics®, Forrester Wave, and Total Economic Impact are trademarks of Forrester Research, Inc. All other
trademarks are the property of their respective companies. [E-60684]

Project Team:
Madeline Harrell,
Market Impact Consultant

Jemimah Charles,
Associate Market Impact Consultant

Contributing Research:
Forrester’s Technology Architecture
& Delivery research group

Table Of Contents

3	 Executive Summary

4	 Key Findings

5	 Traditional Productivity Barriers Now Have
Straightforward Solutions

8	 There’s A Real Hunger For Hybrid Development
Tools And Practices

10	 Look First To Automation Then To AI To
Accelerate Development

12	 Key Recommendations

13	 Appendix

MAINFRAME APPLICATION DEVELOPER STUDY 2

http://forrester.com/consulting?utm_source=forrester_tlp%E2%80%8B&utm_medium=web%E2%80%8B&utm_campaign=consulting%E2%80%8B
https://www.forrester.com/research/?utm_source=forrester_tlp&utm_medium=web&utm_campaign=consulting
http://forrester.com/consulting?utm_source=forrester_tlp%E2%80%8B&utm_medium=web%E2%80%8B&utm_campaign=consulting%E2%80%8B
https://www.forrester.com/services/technology-architecture-and-delivery/SER117/priorities?utm_source=forrester_tlp&utm_medium=web&utm_campaign=consulting&utm_content=E-60684
https://www.forrester.com/services/technology-architecture-and-delivery/SER117/priorities?utm_source=forrester_tlp&utm_medium=web&utm_campaign=consulting&utm_content=E-60684

Executive Summary

To ensure the long-term health and vitality of mainframe applications, it’s
critical to understand those responsible for them. While the voice of the global
developer community is widely reported, the voice of mainframe developers
is often drowned out. This study highlights their perspectives, challenges, and
the opportunities they perceive.

As organizations continue to integrate the mainframe into multiplatform
architectures, including hybrid cloud, the role of the mainframe application
developer is evolving in tandem. Mainframe developers want practices and
tools that enable them to perform at the highest levels for their organizations.
But organizations are at different maturity levels in offering new tools and
practices to their mainframe developers. Because of this, their strategic
roadmaps should match their maturity level.

Though most mainframe developers are happy and productive, they face
considerable barriers to increased speed and productivity, including outdated
tools and frameworks, interruptions/context switching, a lack of autonomy,
and a lack of agile/DevOps practices. By prioritizing the mainframe developer
experience (DevX) and automating manual activities, organizations (and their
developers) can deliver even greater value to their businesses.

In June 2024, Broadcom commissioned Forrester Consulting to evaluate the
capabilities and processes mainframe application developers currently have
or desire to improve their organizations’ maturity. Forrester conducted an
online survey with 838 global mainframe developers across organizations,
generations, and geographies, and analyzed the findings. We found that as
developer needs grow and evolve toward contemporary, hybrid development
practices, so do their tools and frameworks. 

MAINFRAME APPLICATION DEVELOPER STUDY 3

Key Findings

Traditional productivity barriers now have straightforward
solutions. The biggest barriers, which include outdated tools
and frameworks, a lack of autonomy, and a lack of agile/
DevOps practices, can be traced to a conservative approach
to change. While cloud developers were “failing fast” with new,
shift-left DevOps techniques, mainframe teams were protecting
mission-critical applications with time-tested methods and tools.
However, many practices that were once cutting-edge, such
as DevOps, are now well-vetted and more easily adopted by
mainframe teams. A well-designed developer experience is
paramount to increasing time spent coding.

There is real hunger for hybrid development tools and
practices. As career mainframe developers retire, replacements
typically have experience with contemporary platforms and
tools, creating a groundswell of demand for common enterprise
standards (e.g., popular IDEs [integrated development
environments], DevOps practices and toolchains). Fifty-six
percent of surveyed developers have professional experience
with other platforms, reflecting an important tipping point.

To accelerate development, look first to automation and, in
the long term, AI. Developers in this study demonstrated a
high level of satisfaction in their roles but recognize the need
to improve their time to market. When asked about the biggest
opportunities to speed mainframe development, automation
stood out as the most common theme. There is also an acute
awareness of AI potential.

MAINFRAME APPLICATION DEVELOPER STUDY 4

Mainframe applications are typically mission-critical transaction processing
applications that entire industries — from financial services to healthcare to
government — rely on. These applications enable core lines of business by
ensuring transactional accuracy and regulatory compliance. The stakes are
high and, as a result, changes to time-tested development practices and
tools are subject to a high level of distrust. However, the art and science of
software engineering have advanced significantly over the past decade with
the introduction of DevOps, major innovations with IDEs, version control
tools, and more.

An examination of the top reported barriers to productivity yields solutions
that are now well understood at the enterprise level. The top reported
barriers are:

•	 Outdated tools and frameworks (35%).

•	 Interruptions/context switching (34%).

•	 A lack of agile/DevOps practices (32%).

•	 A lack of autonomy (dependencies) (32%).

Modern practices like DevX workflow design and DevOps automation with
continuous integration and continuous delivery (CI/CD) pipelines and test
automation are now widely accepted and deployed within the enterprise.
While these practices are starting to expand into platform engineering at the
enterprise level, mainframe teams should evaluate the well-established ones
that address the top barriers. Regarding development environments, for
example, 31% of surveyed respondents use the out-of-favor Eclipse IDE while
the green screens of ISPF remain prevalent. Widely used IDEs that facilitate
code navigation like Visual Studio Code are readily available for mainframe
use with extensions for mainframe languages, subsystems, etc.

This need is particularly acute with mainframe development as applications
are often large and complex. Twenty-five percent of respondents reported
their applications exceed 5 million lines of code, and 10% reported 10 million

Traditional Productivity Barriers Now Have Straightforward Solutions

MAINFRAME APPLICATION DEVELOPER STUDY 5

or more lines, so having an editor that facilitates code navigation offers
significant impact (see Figure 1). Applications this large present unique coding,
testing, and deployment challenges that modern tools can help address.

FIGURE 1

Average Size Of Applications

Base: 838 global mainframe application developers at enterprise companies
Source: A commissioned study conducted by Forrester Consulting on behalf of Broadcom, June 2024

The traditional organizational alignment among many mainframe teams
reflects a desire for specialized roles: developers write the code, and testers
test the code while systems programmers control resources and database
administrators control tables.

Contemporary development, however, reflects the shift-left mindset where
developers are empowered with self-service to access the resources
and tools they need to code, test, and deploy efficiently. By adopting this
empowerment mindset, mainframe teams can reduce the disruptions and
context switching that dependencies create.

Coding effort was a mixed bag for the surveyed developers. Of all the
activities involved in a typical day, they spent more time coding than on any
other. However, it was only 16% of their time, which means they’re spending
84% on noncoding activities. Empowering these developers with shift-left

Fewer than 100,000 lines

100,000 to 499,999 lines

500,000 to 4,999,999 lines

5 million to 9,999,999 lines

10 million lines or more

8%

22%

36%

25%

10%

MAINFRAME APPLICATION DEVELOPER STUDY 6

autonomy will free them to spend more time coding and in the “flow state”
— those windows of maximum concentration and engineering productivity —
and less time waiting for others and toggling between coding and noncoding
tasks (see Figure 2).

Following the recommendations in this report will help increase their time
spent coding.

FIGURE 2

Average Mainframe App Developer Time Spent On Daily Tasks

Base: 838 global mainframe application developers at enterprise companies
Source: A commissioned study conducted by Forrester Consulting on behalf of Broadcom, June 2024

Coding

Testing

Requirements analysis/design

Tooling

Security/compliance

16%

11%

11%

10%

9%

Debugging/troubleshooting

Learning/professional development

Deploying/setting up environments

Documentation

Collaboration

Administrative work

9%

8%

7%

7%

6%

6%

MAINFRAME APPLICATION DEVELOPER STUDY 7

Fifty-six percent of surveyed developers have professional experience on
other platforms and, when education and nonwork coding are factored in,
the number is likely much higher. These developers already know and love
hybrid development tools and practices so making them available is an
easy win.

A developer’s primary toolset is their editor/IDE and version control tool.
Visual Studio Code is consistently rated the most popular and widely used
IDE, and 70% of mainframe developers say the adoption of VS Code will
result in a major productivity increase. Similarly, with version control, 74%
say Git adoption will result in a major productivity increase. Git adoption
has the added benefit of opening up the world of DevOps toolchains,
which are typically integrated with enterprise Git servers.

Legacy development tools and practices create several challenges for
mainframe leaders, not least of which is staffing. A limited talent pool
means new recruits often require extensive training, which impacts
onboarding timelines. Opening mainframe development to hybrid
development tools and practices offers a wide range of benefits, including:

•	 A larger talent pool, easier internal transfers, and reduced onboarding
time.

•	 Improved communication and collaboration at all levels (e.g.,
intra-team, cross-team, cross-functional, between mainframe and
nonmainframe developers).

•	 A virtuous loop of more productive developers becoming happier
developers, increased retention, easier recruiting, etc.

In summary, using the same tools and practices as other development
teams helps create a common vocabulary and fabric across the enterprise
(see Figure 3).

There’s A Real Hunger For Hybrid Development Tools And Practices

MAINFRAME APPLICATION DEVELOPER STUDY 8

FIGURE 3

Regularly Used AppDev Practices

Base: 838 global mainframe application developers at enterprise companies
Source: A commissioned study conducted by Forrester Consulting on behalf of Broadcom, June 2024

(Showing "Yes, I use this regularly.")

On-mainframe workspaces

Automated functional testing

Code reviews (aka pull/merge requests)

Automated code deployment

Code scanning

Automated code promotion

Automated unit testing/code coverage

Automated change approvals

Automated change synchronization (with ITSM)

Developer builds (of local work)

Off-mainframe workspaces (developer environments, e.g., zD&T)

Software bill of materials (SBOM)

Le
as

t c
om

m
on

M
os

t c
om

m
on

MAINFRAME APPLICATION DEVELOPER STUDY 9

Mainframe developers are generally happy in their roles as illustrated by a
93% satisfaction rate (with 68% being extremely satisfied). Eighty-nine percent
view their teams as productive. Yet the need to accelerate the delivery cycle
is clear. While CI/CD has become commonplace in the cloud world, only 16%
of mainframe developers reported typical code changes more frequently
than monthly. Twenty-six percent reported typical code changes of six
months or more. So, we asked developers “What would be the single biggest
improvement to accelerate mainframe development?”

Automation emerged as the top theme — mentioned over 130 times — which
may seem counterintuitive as almost half reported their build, test, and deploy
processes were mostly automated already. In the speed context, however,
automation was cited as reducing manual workloads and eliminating human
error. Repetitive tasks were called out specifically.

Automation can now be safely orchestrated off-platform with tools like the
open-source Zowe Command Line Interface (CLI). Innovations like Zowe
open the door for developers to take advantage of contemporary automation
tools and practices and access mainframe resources using a familiar CLI
to integrate tools with the mainframe. Mainframe developers are also
increasingly likely to have experience with the most common automation
languages: JavaScript and Python.

In terms of functional areas, testing was most frequently mentioned in terms of
speeding development.

In a separate question about a range of modernization options, test
automation was rated extremely important. Like most areas of technology, AI
is having an impact on software development and mainframe developers are
already experimenting.

Generative AI initiatives designed to help developers with COBOL, PL/I,
and Assembler applications understand that their code (aka code explain)
and edit/write code (aka code assist) are being developed and tested via
collaboration between leading software vendors and their innovation partners,

Look First To Automation Then To AI To Accelerate Development

MAINFRAME APPLICATION DEVELOPER STUDY 10

open-source projects, and other entrepreneurs/innovators. With such expansive
and complex applications, helping mainframe developers understand where to
make changes with assistive intelligence could provide the best short-term ROI.

This need is particularly acute as retiring staff are taking their application
expertise (e.g., code structure, logic, and flow, data structures, and industry
knowledge) with them. Combine this with this survey finding that half of
respondents need three days or more to understand where to make code
changes, and the opportunity is clear (see Figure 4).

As issues like security and code confidentiality are addressed, the potential
impact of AI-driven chatbots for code explanation and code assistance in
mainframe development could be enormous.

FIGURE 4

Average Time It Takes To Understand Where To Make Code Changes

Base: 838 global mainframe application developers at enterprise companies
Note: Total does not equal 100 due to rounding.
Source: A commissioned study conducted by Forrester Consulting on behalf of Broadcom, June 2024

1 hour or less

1 to 3 hours

Half a day

A full day

A few days

4%

13%

16%

18%

32%

A full week

More than a full week

13%

5%

MAINFRAME APPLICATION DEVELOPER STUDY 11

Key Recommendations

Forrester’s in-depth survey of mainframe application developers yielded
several important recommendations:

Prioritize the mainframe developer experience (DevX).

To maximize developers’ time in the flow state, mainframe leaders
should put the end-to-end developer experience front and center. Take
a holistic view with special consideration for those aspects of mainframe
development that are unique to address critical productivity barriers like
context switching and dependencies.

Adopt hybrid development tools and practices (i.e., existing enterprise
standards).

Enable developers to use the same tools their contemporaries use like
VS Code, Git, and DevOps workflows and toolchains. However, tools
like IDEs can be part of a developer’s identity so don’t force hybrid
standards on them. Once they observe the level of self-service autonomy
and collaboration, even entrenched users will embrace these tools and
practices, too.

Automate while staying connected to key AI initiatives.

Encourage teams to adopt modern automation frameworks and automate
repetitive manual activities highlighted in your DevX research. Expand on
existing Rexx-based automations and prioritize opportunities to automate
manual testing activities. Generative AI (genAI) initiatives like COBOL code
explanation and assistance are fast-moving, so stay involved as they will
likely have a profound impact on mainframe development over time.

MAINFRAME APPLICATION DEVELOPER STUDY 12

PRIMARY ROLE

z/OS mainframe application
developer 100%

COMPANY SIZE

2,000 to 4,999 employees 12%

5,000 to 19,999 employees 23%

20,000 to 29,999 employees 26%

30,000 to 39,999 employees 20%

40,000 to 49,999 employees 13%

50,000 or more employees 7%

YEARS OF MAINFRAME EXPERIENCE

0 to 2 9%

3 to 5 20%

6 to 10 26%

11 to 16 23%

16 to 25 14%

26+ 8%

COUNTRY

India 31%

United States 25%

United Kingdom 12%

Germany 10%

France 10%

Brazil 8%

Canada 5%

In this study, Forrester conducted an online survey of 838 global z/OS mainframe application
developers to evaluate the practices and capabilities utilized by mainframe application developer
organizations. Survey participants included global mainframe developers across developer
organizations, generations, and geographies. This study analyzed the findings as related to their
tools, frameworks, and roadmaps. Respondents were offered a small incentive as a thank you for
time spent on the survey. The study began May 2024 and was completed in June 2024.

Note: Percentages may not total 100 due to rounding.

Appendix A: Methodology

Appendix B: Demographics

Appendix

PRIMARY CODING LANGUAGE

Java 28%

Python 23%

COBOL 22%

C++ 10%

Assembler 6%

PL/I 5%

C 4%

Rexx 1%

INDUSTRY (TOP 7)

Financial services and/or banking 12%

Retail 10%

Telecommunications services 10%

Technology — systems integration/
services 9%

Insurance 8%

Healthcare 7%

Manufacturing and materials 7%

PROFESSIONAL PLATFORM CODING
EXPERIENCE

Cloud 45%

Mobile 27%

Distributed 28%

Mainframe 100%

MAINFRAME APPLICATION DEVELOPER STUDY 13

	Executive Summary
	Key Findings
	Traditional Productivity Barriers Now Have Straightforward Solutions
	There’s A Real Hunger For Hybrid Development Tools And Practices
	Look First To Automation Then To AI To Accelerate Development
	Key Recommendations
	Appendix

